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We consider the motion of small-amplitude surface gravity waves over variable 
bathymetry. Although the governing equations of motion are linear, for general 
bathymetric variations they are non-separable and cannot be solved exactly. For 
slowly varying bathymetry, however, approximate solutions based on geometric 
(ray) techniques may be used. The ray equations are a set of coupled nonlinear 
ordinary differential equations with Hamiltonian form. It is argued that for general 
bathymetric variations, solutions to these equations - ray trajectories - should 
exhibit chaotic motion, i.e. extreme sensitivity to initial and environmental 
conditions. These ideas are illustrated using a simple model of bottom bathymetry, 
h(x, y) = h,( 1 + E cos (27cxIL) cos (27cylL)). The expectation of chaotic ray trajectories 
is confirmed via the construction of Poincard sections and the calculation of 
Lyapunov exponents. The complexity of chaotic geometric wavefields is illustrated 
by considering the temporal evolution of (mostly) chaotic wavecrests. Some practical 
implications of chaotic ray trajectories are discussed. 

1. Introduction 
In  this paper we consider the motion of small-amplitude surface gravity waves 

over variable bathymetry. Although the governing equations of motion for the 
surface displacement C(z, y, t)  are linear, they can be solved analytically only for very 
special bathymetric variations which allow variables to  be separated. for general 
(non-separable) bathymetry which varies slowly on a scale of wavelengths, a 
geometric approximation is often made to simplify the problem. We assume that the 
bathymetric variations are sufficiently gradual that the geometric approximation is 
valid, and examine the behaviour of surface gravity waves in this limit. 

It is well known (see e.g. Landau & Lifshitz 1959; or Whitham 1974) that  the ray 
equations describing small-amplitude surface gravity waves are a system of coupled 
nonlinear ordinary differential equations, 

where w2 = gk tanh kh. (2) 
Here k = (kz, ky) is the wavenumber vector, k = Ikl = (kz + k;);, g is the gravitational 
acceleration, w is the frequency, and h = h(z, y) is the water depth. Equations (1) 
define an autonomous Hamiltonian system with two degrees of freedom. The 
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which is a function of the generalized coordinates, x and y, and the corresponding 
momentum variables, k, and k,, takes the place of the Hamiltonian. The Hamiltonian 
character of the ray equations plays an important role in much of our analysis. 

It follows from (1) and (3) that w is constant along ray trajectories, 

dw awdx awdy awdk ,  ao dk 
-=-- +--+--+- -2 = 0. 
dt axdt  ay dt ak, dt ak, dt (4) 

In  other words, w is a constant of the motion. The ray equations (1) are said to be 
integrable if a second independent constant of the motion I(x, y, k,, k,) exists which 
satisfies U/dt = 0, and whose Poisson brackets with w vanish (see e.g. Lichtenberg 
& Lieberman 1983). The existence of a second constant of the motion I depends on 
the bathymetric variations, h(x, y). If h = h(x), for example, then k, is a second 
constant of the motion and the ray equations (1) are integrable. For general 
bathymetry, however, the only constant of the motion is w and the ray equations (1) 
are not integrable. 

Some solutions to  non-integrable Hamiltonian systems - ray trajectories in the 
present context - are known to exhibit chaotic behaviour, i.e. extreme sensitivity to 
initial conditions (see e.g. Hdnon 1983; or Lichtenberg & Lieberman 1983). Thus, for 
general bathymetric variations, we expect that some surface gravity wave ray 
trajectories will exhibit chaotic motion. Throughout the remainder of this paper this 
idea is explored in greater detail. All of the numerical results presented are based on 
the bathymetric model 

h(x, y) = h, (1 + 8 cos (7) cos ??)), ( 5 )  

which, in spite of its simplicity, produces chaotic ray trajectories. This bathymetric 
model is not corrugated, but it rather corresponds to a regular alternating pattern of 
bosses and dimples. More complicated (and realistic) bathymetric variations would 
likely produce a higher degree of ray chaos. 

In  the following section, the use of Poincark sections as a tool for uncovering the 
presence of chaotic motion is discussed. In  $3, the calculation of Lyapunov 
exponents is discussed. The Lyapunov exponent is a quantitative measure of how 
chaotic a ray trajectory is. In  $4, we consider the evolution of wavecrests. These 
results dramatically illustrate the complexity of chaotic geometric wavefields. Some 
practical implications of chaotic ray trajectories are discussed in $ 5 .  Numerical 
considerations are discussed in Appendix A, and a proof of Liouville’s theorem, as it 
applies to our problem, is given in Appendix B. 

2. Poincark sections 
Each ray trajectory (x(t), y(t), k,(t), k,(t)) is a curve in four-dimensional phase 

space. But each trajectory is confined to  lie on a surface of constant o - an ‘energy 
surface’. This constraint reduces the dimension of the region of phase space which is 
accessible to any ray trajectory from four to  three. If a second constant of the motion 
exists, i.e. if the system (1) is integrable, then the dimension of the accessible region 
of phase space is reduced to two. If the system (1) is non-integrable then ray 
trajectories may either fill volumes (dimension 3) or lie on lower-dimensional surfaces 
(dimension 1 or 2) in the four-dimensional phase space. Such trajectories are referred 
to as chaotic and regular, respectively (see e.g. HBnon 1983). 
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FIGURE 1 .  Poincark sections for four values of B, the strength of the bathymetric variability. The 
mean water depth h, and horizontal scale of the bathymetry L are fixed at 2 m  and 200m, 
respectively. All rays have w = 2n/(4.80 s). Each Poincark section contains contributions from the 
100 rays whose initial conditions are k,(O) = 0, k,(O) = 2n/(20 m), y(O)/L = a and z(O)/L = 0.01, 
0.02, ..., 1.00. 

In order to distinguish between thcsc two types of motion, one may view a two- 
dimensional slice of the full phase space. On this slice, a Poincare' section, chaotic ray 
trajectories fill areas while regular ones are confined to lie on smooth curves. We 
choose the coordinates of our Poincart! section to be the conjugate variables x and k,. 
Successive intersections of a trajectory with this plane (y = constant, with the 
constraint k, > 0) may be thought of as resulting from an implicit area-preserving 
mapping. These ideas are discussed in more detail by HQnon (1983). 

Poincare' sections for the ray trajectories defined by ( l ) ,  (2) and (5) (see also 
Appendix A) are shown in figures 1 and 2. Each section was constructed using 100 
rays. To realize the desired reduction of dimensionality it is important that all rays 
in any Poincare' section lie on the same energy surface, i.e. have the same w. From 
the dispersion relation (2), it  is seen that this condition will be satisfied if all rays start 
at the same depth with the same k. For the bathymetry described by (5) a convenient 
choice, corresponding to points along an initially plane wave propagating in the y- 
direction, is y(0) = $5, k,(O) = 0, k,(O) = k,. This choice was used in figures 1 and 2 
with variable x(O)/L. In the ray equations ( l ) ,  (2), with h(x, y) given by (5 ) ,  x and y 
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FIQURE 2. Poincare' sections for four values of frequency w .  The bathymetry is the same in all cases 
with h, = 2 m, L = 200  m and E = 0.25. Each Poincare section contains contributions from the 100 
rays whose initial conditions are k,(O) = 0, k,(O) = 2x/A, ,  y(O)/L = and z(O)/L = -0.01,0.02, . . . , 
1.00.  The initial wavelength A, = 50 m, 20 m, 10 m and 5 m for 2 n / w  = 11.41 s,  4.80 s ,  2.75 s and 
1.80 s ,  respectively. 

can be defined modulo L without loss of generality. This fact was exploited in 
plotting x and in constructing the Poinear6 sections: the intersection plane y = 
constant was actually an infinite set of planes, y = (n+a)L for integer n. 

The Poincar6 sections shown in figure 1 show ray behaviour as a function of the 
strength of the bathymetric variations, E. In these plots the mean water depth h, and 
the horizontal scale L of the bathymetry are fixed at 2 m and 200 m, respectively. All 
rays have w = 2x/(4.80 s). Although kh varies along ray trajectories, for the 
conditions considered here this product is approximately 0.63, corresponding to 
intermediate-depth waves. When e = 0 all ray trajectories are seen to be regular. This 
is expected because the ray equations are integrable in this case. For small but non- 
zero e ,  a mixture of chaotic and regular ray trajectories is observed. The fact that 
some ray trajectories remain regular for sufficiently small perturbation strength e is 
predicted theoretically : this is the content of the celebrated KAM theorem (see e.g. 
Lichtenberg & Lieberman 1983). As e is increased, the fraction of phase space 
occupied by chaotic ray trajectories is seen to increase. 
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Figure 2 shows the frequency dependence of ray behaviour in a fixed environment 
(h, = 2 m, L = 200 m, B = 0.25). The frequencies selected span the intermediate- 
depth range. The lowest-frequency waves considered ( 2 x / w  = 11.41 s) correspond to 
values of kh near 0.25 - close to shallow water conditions. The highest-frequency 
waves considered (2xl-w = 1.80 s) correspond to values of kh near 2.51 - close to deep 
water conditions. A higher percentage of the lower-frequency rays - which feel the 
bottom more strongly than the higher-frequency rays ~ are seen to be chaotic than 
is the case for the higher-frequency waves. 

In Appendix A the ray equations ( l ) ,  (2) for the bathymetric variations described 
by (5)  are written in non-dimensional form, (A 2). The non-dimensional equations 
depend on two dimensionless parameters, E and w2ho/g. Each set of Poincard sections 
shown in figures 1 and 2 corresponds to varying one of these parameters, holding the 
other fixed. By appealing to the non-dimensional equations (A 2), each Poincard 
section can be rescaled to apply to a variety of choices of dimensional parameters. It 
must be kept in mind, however, that the ratio of the wavelength of the water wave 
2xlk (which varies along a ray) to the horizontal scale of the bathymetry L should 
be kept small, so as not to violate the assumption of slowly varying bathymetry. For 
the choice of dimensional parameters used in figures 1 and 2 this ratio did not exceed 
approximately 0.25 and in most cases was close to 0.1. 

3. Lyapunov exponents 

Lyapunov exponent u, a generalized measure of ray spreading, 
The distinction between regular and chaotic ray trajectories is quantified by the 

Here, d(t) is a measure of the separation in phase space between neighbouring ray 
trajectories. For regular trajectories d(t) asymptotically grows according to  a power 
law and u = 0. All trajectories are of this type in an integrable system. This is most 
easily seen by expressing the solution to the ray equations ( I ) ,  (2) using action-angle 
variables. For chaotic trajectories d(t) asysmptotically grows exponentially and u is 
positive: u-l is the average e-folding time. There are three potential problems 
associated with evaluating (6) to compute u :  calculating d(t) and taking the limits 
d(0) --f 0 and t + co. Although any norm of the vector (dx(t), dy(t), dk,(t), dky(t)) can be 
used to define d(t), calculating this quantity is non-trivial because dx and dy have 
different dimensions than dk, and dk,. The limit d(0) + 0 can be investigated but 
only if it is done analytically. Unfortunately, the limit t + 00 is not attainable, at 
least using numerical methods. The procedure described below eliminates the first 
two of these problems but not the third. 

Differentiating the ray equations (1) gives the variational equations, 

Here wXy = a2w/axay, etc. Note that each such term in the matrix n(t) depends, in 
general, on the ray coordinates x, y, k, and k,. These, in turn, are solutions to (1). 
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Thus, (7) and (1 )  constitute a system of eight coupled equations whose solution is 
x(t) . . . dky(t). 

Solutions to these equations - corresponding to  different sets of initial conditions 
- can be combined to form a general set of equations relating ray spreading after time 
t to initial ray spreading, 

= J(t 

For a given ray trajectory - identified by its initial conditions, x(0). . . ky(0) - the first 
column of the Jacobi matrix J(t) is equal to  (dx(t), dy(t), dk,(t), dky(t))T corresponding 
to the initial conditions (1 ,0 ,0 ,  O)T. The second column corresponds to the initial 
conditions (0,1,0, O)T, etc. The determinant of the Jacobi matrix defined in this 
fashion is equal to unity. The constancy of det(J( t ) )  is a consequence of the 
Hamiltonian form of the ray equations. This result, a proof of which is given in 
Appendix B, is a statement of Liouville’s theorcrn. 

The left-hand side of (8) can be written as a linear combination of Aiui where 
Jui = hiui. Equations (8) describe the temporal evolution in phase space of an 
infinitesimal hyperspherc (initially), centred on a given ray trajectory. As time 
evolves the hypersphere is deformed into an ellipsoid, but the enclosed volume 
remains constant. The eigenvectors ui and eigenvalues A, describe, respectively, the 
directions of the principal axes and the rate of stretching along these axes. The 
product of the eigenvalues is equal to one, the determinant of the Jacobi matrix. This 
is a statement of phase-space volume conservation. Let A, denote the eigenvalue 
whose modulus is greatest. Then definition (6) is equivalent to 

1 
u = lim-In [All .  

t-m t 
(9) 

More accurately, this is the largest of four Lyapunov exponents which add to zero 
pairwise. 

Figure 3 shows plots of t-llnIA,l for two ray trajectories, one chaotic and one 
regular. These results are consistent with the Poincark section which is shown in both 
figures 1 and 2 corresponding tc w = 2n/(4.80 s), ho = 2 m, h = 200 m and E = 0.25: 
the (chaotic) ray for which u z ,190 s)-l lies in the large chaotic sea while the 
(regular) ray for which u z 0 lies on m e  of curves seen in the two-island structure 
filling the left, centre and right of the Poincar6 section. 

The e-folding time v-l can be thought of as a ray ‘predictability horizon ’. To see 
this, note that under chaotic conditions Ih,( grows asymptotically like (here 
u‘ = u/ln 10). The Lyapunov exponent expressed in base 10, u‘, can be interpreted as 
the number of digits of information lost, on average, per unit time. If, for instance, 
u’ = 1 min and calculations are performed on a machine with seven-digit accuracy 
(corresponding to 32-bit floating-point word size), then for calculated times of seven 
minutes or more the initial conditions of the ray will have been forgotten. In other 
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FIGURE 3. Plots of t-' In [All  us. t for two ray trajectories in the environment for which h, = 2 m, 
L = 200 m and E = 0.25. Both rays have initial conditions y(O)/L = 4, k,(O) = 0 ,  k,(O) = 2n/(20 m) 
and c t ~  = 2~ / (4 .80  s). (a) The regular ray for which z(O)/L = 0.05 corresponding to v = 0. ( b )  The 
chaotic ray for which z(O)/L = 0.15, corresponding to Y (190 s)-'. 

words, with 32-bit floating-point arithmetic, this ray trajectory would not be 
computable for times in excess of somewhat less than seven minutes. Thus v-l is an 
order of magnitude estimate of the timescale over which a ray trajectory can be 
computed. The predictability timescale v-l can be converted approximately to a 
predictability distance scale by multiplying by a typical group speed along the ray. 

4. Wavecrests 
The temporal evolution of wavecrests provides insight into the difference in the 

complexity of chaotic and regular geometric wavefields. If most of the rays 
corresponding to points along such a wavecrest are chaotic with Lyapunov exponent 
v, then the length of the wavecrest is expected to grow on average like exp (vt). If the 
corresponding rays are regular, on the other hand, then the length of the wavecrest 
will grow according to a power law. The difference is striking after only a few e- 
folding periods. 

These ideas are illustrated in figure 4. Here, snapshots of two wavecrest segments 
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FIQURE 4. Snapshots of two wavecrest segments at three different times. Time increases from top 
to  bottom. Both wavecrest segments were computed for the environmental conditions h, = 2 m, 
L = 200 m and E = 0.25. All rays along both wavecrests have initial conditions y(O)/L = i, k,(O) = 
0, kJO) = 2 ~ / ( 2 0  m), corresponding to w = 2~ / (4 .80  s). The shorter wavecrest in the centre 
corresponds t o  the (mostly regular) rays for which 0.45 < r(O)/L < 0.55. The longer wavecrest 
which is on the right initially corresponds t o  the (mostly chaotic) rays for which 0.75 < r (O) /L < 
0.85. The periodicity of z was exploited in plotting these wavecrests. 

- one corresponding to mostly regular rays and one corresponding to mostly chaotic 
rays - are shown at three different times. These wavecrests were computed for the 
environmental conditions h, = 2 m, L = 200 m, e = 0.25 and frequency w = 
2rc/(4.80 s), corresponding to the Poincard section which is shown in both figures 1 
and 2:  the chaotic wavefront corresponds to rays in the large chaotic sea, while the 
regular wavefront corresponds to rays in the two-island structure filling the left, 
centre and right of the Poincard section. 

Wavecrests are constructed by plotting the (2, y)-coordinates of many closely 
spaced (so as to  approximate a continuum) ray trajectories at fixed values of phase 
time t,, = s ds/c. Here ds is arclength along a ray trajectory and c = w / k  is the phase 
speed. The greatest phase time shown, t,, = 500 s, corresponds to approximately 
three e-folding periods of the corresponding chaotic rays (v-l x 190 s in units of 
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phase time for these rays). One expects the length of the wavefront to  have grown 
by a factor of approximately exp (3) z 20 over this time, in rough agreement with the 
results shown. 

The formation of cusps along the wavecrests shown in figure 4 is expected. 
Generically, wavecrests (surfaces of constant phase) consist of sections of certain 
catastrophes (see e.g. Brown & Tappert 1987). Structural stability in two dimensions, 
x and y ,  dictates that  these wavecrests consist of cusps connected by smooth curves. 

5. Summary and discussion 
We have argued that over generic (non-separable) bathymetric variations a t  least 

some intermediate and shallow-water surface gravity wave ray trajectories are 
chaotic, i.e. exhibit extreme sensitivity to initial and environmental conditions. 
These ideas have been illustrated using a simple, analytically prescribed three- 
parameter (ho, the average water depth; L ,  the horizontal scale of the bathymetric 
variations ; and e ,  the fractional change in depth associated with the bathymetric 
variations) bathymetric model. The surface gravity wave ray equations written in 
non-dimensional form were shown to depend on two dimensionless parameters, e and 
w2ho/g. It was shown that :  (i) if w2ho/g is fixed, the fraction of all ray trajectories 
which exhibit chaotic motion increases as e increases; and (ii) if 8 is fixed, the fraction 
of all ray trajectories which exhibit chaotic motion decreases as w2h,/g increases. 
Both of these results are expected. We discussed the use of the Lyapunov exponent 
as a measure of how chaotic a ray trajectory is. The complexity of a chaotic 
geometric wavefield relative to a regular one was illustrated by considering the 
temporal evolution of segments of wavecrests. 

It is natural to  ask whether the effects we have described, such as the exponential 
stretching of segments of wavecrests, occur in nature. The answer is probably not. To 
understand why, note that the ray equations ( l ) ,  (2) correspond to the geometric or 
classical limit of the mild-slope equation (see e.g. Mei 1983) - a linear wave equation 
for the surface displacement [(x, y ,  t ) .  Because this equation is linear its solutions 
cannot be chaotic in the strict sense, namely, exponential sensitivity in the limit t + 
00. Physically, the absence of chaos in solutions to the mild-slope equation can be 
understood by noting that effects of wave diffraction, which are not present in our 
analysis, will serve to smooth out small details of the geometric wavefields we have 
considered. These effects are most important a t  lower frequencies. But it is the lower- 
frequency waves which are most sensitive to bathymetric variations and hence the 
most likely to be chaotic. Thus, loosely speaking, the importance of diffractive effects 
grows as the likelihood of chaotic ray trajectories increases. In  addition to 
diffractive effects, which are present in the solutions of the linear (small-amplitude) 
equations of motion, nonlinear finite-amplitude effects will be present in nature. 
These may also serve to overcome behaviour associated with chaotic ray trajectories 
by, for example, causing closely spaced segments of a wavecrest to  coalesce. On the 
other hand, finite-amplitude instabilities (e.g. Benjamin 1967) may cause wavecrests 
to  break up into chaotic short-crested waves. Chaotic solutions of the finite- 
amplitude wave equations will differ from the ray chaos that we have investigated. 

Even if the effects associated with chaotic surface gravity wave ray trajectories 
that  we have described are not observable in nature, this study still has important 
practical implications in the field of coastal hydrodynamics. The Shore Protection 
Manual (CERC 1977) recommends the use of computer ray tracing models (see e.g. 
Hardy 1968) for the construction of ‘refraction diagrams’ to predict the effects of 
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refraction by bathymetry. This study addresses and quantifies the limitations of 
making such predictions under chaotic conditions, i.e., when variables cannot be 
separated. Under such conditions, predictions using ray theory must be limited to  
times and distances within some finite ‘predictability horizon ’ (Lighthill 1986). At 
greater times, ray trajectories will have effectively forgotten their initial conditions 
and are of little value - a t  least for making deterministic predictions. Under such 
conditions, wavefield predictions must be based on the numerical solution to a wave 
equation such as the mild-slope equation or some finite-amplitude extension thereof. 
For the problem we have investigated (recall that u-’ w 190 s and w = 27c/(4.80 s) 
for a ray which was used to  produce figure 3) loss of predictability occurs after a few 
hundred wave periods. This is approximately the outer limit of the domain over 
which the neglect of finite-amplitude effects is expected to be valid. Thus, ray chaos 
provides an additional reason not to use the ray approximation beyond generally 
accepted limits. 

I n  addition to this computational issue, our results suggest that the distinction 
between separable and non-separable linear wave propagation problems is deeper 
than noting that we are able to express the solution to the former but not the latter 
class of problems in terms of elementary functions and integrals: in the geometric 
limit, at least, the behaviour of the solution to these two types of problem is 
fundamentally different. 

We are grateful to Drs B. Le Mehaute, J. Willemsen and A. Griffa for the benefit 
of our discussions on water waves and chaos. This work was supported by the Office 
of Naval Research and the National Science Foundation. 

Appendix A. Numerical considerations 
All of the numerical results reported in this paper require the integration of 

systems of coupled nonlinear ordinary differential equations. These are either the ray 
equations ( l ) ,  (2) or the coupled ray - variational equations ( l ) ,  (2), (7). In  the 
following, some simple considerations relating to this task are discussed. First, we 
point out that the constancy of w along ray trajectories (4) can be used to both 
simplify and improve the accuracy of these calculations. Then we show that for 
bathymetric variations described by ( 5 )  the non-dimensionalized ray equations 
depend on two dimensionless parameters. Finally, checks on the accuracy of our 
calculations are discussed. 

The ray ( 1 )  and variational equations (7 )  involve, respectively, first and second 
partial derivatives ofw (2) with respect to  x, y, k,  and k,. These are somewhat messy 
expressions which involve the hyperbolic functions tanh kh and sech2 kh. These 
functions need not be evaluated, however. It follows from the dispersion relation (2) 
that tanh kh = w 2 / ( g k )  and sech2 kh = 1 -w4/(g2k2). The latter expressions are 
particularly simple to evaluate because, from (4), w ( t )  = w ( O ) ,  i.e. w is constant along 
any ray trajectory. Thus, making these substitutions simultaneously reduces the 
number of required floating-point operations (significantly) and improves the 
accuracy of the results - because potential errors associated with the evaluation of 
h(z(t) ,  y ( t ) ) ,  tanh kh and sech2 kh have been eliminated. With these comments in 
mind, these partial derivatives are numerically evaluated in the following form : 
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Here xi = x or y, k, = k, or k, and 6(ki, kj) = 1 if ki = k, and 0 if k, 
For the bathymetric variations described by (5), it is instructive to write the ray 

equations in non-dimensional form. For numerical purposes this is convenient but 
not necessary. In  terms of the dimensionless variables to = h,wt/L, xo = x/L, yo = 
y/L, k: = k, h,, k: = k, h, and ko = kh, these equations are 

kj. 

These equations are seen to depend on two dimensionless parameters - E and w2h,/g 
-which govern the stochasticity of the ray trajectories. 

The non-dimensional form of the ray equations illustrates an important point. 
Chaotic motion is often defined as unpredictable motion of a deterministic nonlinear 
system owing to  extreme sensitivity to initial conditions. But the non-dimensional 
variables depend on environmental parameters, which, when perturbed, cause a 
perturbation to the non-dimensional initial conditions. Thus, extreme sensitivity 
applies to both initial and environmental conditions. 

All numerical calculations were performed using a fourth-order Runge-Kutta 
algorithm with a fixed step size of Ato = 0.005 or smaller. Both the ray equations and 
the coupled ray-variational equations were integrated in dimensional form. Double- 
precision arithmetic, i.e. 64-bit floating-point wordsize, was used for all calculations. 
To check the accuracy of the calculations, the constancy of w and phase-space 
volume ( d e t J  = 1 - for the Lyapunov exponent calculation) along ray trajectories 
wers checked a t  regular intervals. I n  no case did the fractional errors, 
(w(t)-w(O))/w(O) and detJ(t)-  1,  exceed 1.0 x and 1 . 0  x lop6, respectively. 

Appendix B. A proof of Liouville’s theorem 
In  the following, a direct proof of the result det (J(t)) = 1, where J(t) is the Jacobi 

matrix defined in (8), is given. This is a statement of Liouville’s thoerem. This result, 
which follows from the Hamiltonian form of the ray equations (l) ,  (2), is important 
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theoretically and provides a means of checking the accuracy of the numerical 
integration of the coupled ray-variational equations ( I ) ,  (2), (7)  as discussed in 
Appendix A. 

Let d ( t )  denote the column vector (dz(t), dy(t), dL,(t), dk,(t))T. Then the variational 
equations (7)  can be written 

d 
dt 
- d ( t )  = s l ( t ) d ( t ) .  

The solution to this equation is given by equation (8), 

d ( t )  = J(t)&(O). 

The Jacobi matrix J(t) can be expressed formally as 

J(t) = T exp ( s, sl(t’) dt’) 

where T is Dyson’s time ordering operator. The determinant of J is related to the 
trace of 0, 

det J(t) = T exp ( 1 t r  [Q(t’)] df‘) . 

By inspection of the variational equations (7 ) ,  

t r  [Q( t ) ]  = 0. (B 5 )  

It follows that det J(1) = 1, (B 6) 

which completes the proof. 
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